HFCAS OpenIR  > 中科院等离子体物理研究所
Transport modeling of the DIII-D high beta(p) scenario and extrapolations to ITER steady-state operation
McClenaghan, J.1; Garofalo, A. M.2; Meneghini, O.2; Smith, S. P.2; Leuer, J. A.2; Staebler, G. M.2; Lao, L. L.2; Park, J. M.3; Ding, S. Y.4; Gong, X.4; Qian, J.4
2017-11-01
Source PublicationNUCLEAR FUSION
Volume57Issue:11
AbstractTransport modeling of a proposed ITER steady-state scenario based on DIII-D high poloidalbeta (beta(p)) discharges finds that ITB formation can occur with either sufficient rotation or a negative central shear q-profile. The high beta(p) scenario is characterized by a large bootstrap current fraction (80%) which reduces the demands on the external current drive, and a large radius internal transport barrier which is associated with excellent normalized confinement. Modeling predictions of the electron transport in the high beta(p) scenario improve as q(95) approaches levels similar to typical existing models of ITER steady-state and the ion transport is turbulence dominated. Typical temperature and density profiles from the non-inductive high beta(p) scenario on DIII-D are scaled according to 0D modeling predictions of the requirements for achieving a Q = 5 steady-state fusion gain in ITER with 'day one' heating and current drive capabilities. Then, TGLF turbulence modeling is carried out under systematic variations of the toroidal rotation and the core q-profile. A high bootstrap fraction, high beta(p) scenario is found to be near an ITB formation threshold, and either strong negative central magnetic shear or rotation in a high bootstrap fraction are found to successfully provide the turbulence suppression required to achieve Q = 5.
SubtypeArticle
KeywordSteady-state Transport Iter Diii-d
WOS HeadingsScience & Technology ; Physical Sciences
Funding OrganizationUS Department of Energy, Office of Science, Office of Fusion Energy Sciences(DE-FC02-04ER54698 ; US Department of Energy, Office of Science, Office of Fusion Energy Sciences(DE-FC02-04ER54698 ; National Magnetic Confinement Fusion Program of China(2015GB102002 ; National Magnetic Confinement Fusion Program of China(2015GB102002 ; ORNL AToM SciDAC(DE-FG02-95ER54698 ; ORNL AToM SciDAC(DE-FG02-95ER54698 ; ORNL DIII-D science ; ORNL DIII-D science ; DE-SC0010685) ; DE-SC0010685) ; 2015GB103000) ; 2015GB103000) ; DE-FG02-95ER54309) ; DE-FG02-95ER54309) ; US Department of Energy, Office of Science, Office of Fusion Energy Sciences(DE-FC02-04ER54698 ; US Department of Energy, Office of Science, Office of Fusion Energy Sciences(DE-FC02-04ER54698 ; National Magnetic Confinement Fusion Program of China(2015GB102002 ; National Magnetic Confinement Fusion Program of China(2015GB102002 ; ORNL AToM SciDAC(DE-FG02-95ER54698 ; ORNL AToM SciDAC(DE-FG02-95ER54698 ; ORNL DIII-D science ; ORNL DIII-D science ; DE-SC0010685) ; DE-SC0010685) ; 2015GB103000) ; 2015GB103000) ; DE-FG02-95ER54309) ; DE-FG02-95ER54309)
DOI10.1088/1741-4326/aa79ca
WOS KeywordEQUATION
Indexed BySCI
Language英语
Funding OrganizationUS Department of Energy, Office of Science, Office of Fusion Energy Sciences(DE-FC02-04ER54698 ; US Department of Energy, Office of Science, Office of Fusion Energy Sciences(DE-FC02-04ER54698 ; National Magnetic Confinement Fusion Program of China(2015GB102002 ; National Magnetic Confinement Fusion Program of China(2015GB102002 ; ORNL AToM SciDAC(DE-FG02-95ER54698 ; ORNL AToM SciDAC(DE-FG02-95ER54698 ; ORNL DIII-D science ; ORNL DIII-D science ; DE-SC0010685) ; DE-SC0010685) ; 2015GB103000) ; 2015GB103000) ; DE-FG02-95ER54309) ; DE-FG02-95ER54309) ; US Department of Energy, Office of Science, Office of Fusion Energy Sciences(DE-FC02-04ER54698 ; US Department of Energy, Office of Science, Office of Fusion Energy Sciences(DE-FC02-04ER54698 ; National Magnetic Confinement Fusion Program of China(2015GB102002 ; National Magnetic Confinement Fusion Program of China(2015GB102002 ; ORNL AToM SciDAC(DE-FG02-95ER54698 ; ORNL AToM SciDAC(DE-FG02-95ER54698 ; ORNL DIII-D science ; ORNL DIII-D science ; DE-SC0010685) ; DE-SC0010685) ; 2015GB103000) ; 2015GB103000) ; DE-FG02-95ER54309) ; DE-FG02-95ER54309)
WOS Research AreaPhysics
WOS SubjectPhysics, Fluids & Plasmas
WOS IDWOS:000407218600008
Citation statistics
Document Type期刊论文
Identifierhttp://ir.hfcas.ac.cn:8080/handle/334002/33570
Collection中科院等离子体物理研究所
Affiliation1.Oak Ridge Associated Univ, Oak Ridge, TN 37831 USA
2.Gen Atom, POB 85608, San Diego, CA 92186 USA
3.Oak Ridge Natl Lab, POB 2008, Oak Ridge, TN 37831 USA
4.Chinese Acad Sci, Inst Plasma Phys, Hefei 230031, Anhui, Peoples R China
Recommended Citation
GB/T 7714
McClenaghan, J.,Garofalo, A. M.,Meneghini, O.,et al. Transport modeling of the DIII-D high beta(p) scenario and extrapolations to ITER steady-state operation[J]. NUCLEAR FUSION,2017,57(11).
APA McClenaghan, J..,Garofalo, A. M..,Meneghini, O..,Smith, S. P..,Leuer, J. A..,...&Qian, J..(2017).Transport modeling of the DIII-D high beta(p) scenario and extrapolations to ITER steady-state operation.NUCLEAR FUSION,57(11).
MLA McClenaghan, J.,et al."Transport modeling of the DIII-D high beta(p) scenario and extrapolations to ITER steady-state operation".NUCLEAR FUSION 57.11(2017).
Files in This Item:
There are no files associated with this item.
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[McClenaghan, J.]'s Articles
[Garofalo, A. M.]'s Articles
[Meneghini, O.]'s Articles
Baidu academic
Similar articles in Baidu academic
[McClenaghan, J.]'s Articles
[Garofalo, A. M.]'s Articles
[Meneghini, O.]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[McClenaghan, J.]'s Articles
[Garofalo, A. M.]'s Articles
[Meneghini, O.]'s Articles
Terms of Use
No data!
Social Bookmark/Share
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.