HFCAS OpenIR  > 中科院等离子体物理研究所
Transport modeling of the DIII-D high beta(p) scenario and extrapolations to ITER steady-state operation
McClenaghan, J.1; Garofalo, A. M.2; Meneghini, O.2; Smith, S. P.2; Leuer, J. A.2; Staebler, G. M.2; Lao, L. L.2; Park, J. M.3; Ding, S. Y.4; Gong, X.4; Qian, J.4
2017-11-01
发表期刊NUCLEAR FUSION
摘要Transport modeling of a proposed ITER steady-state scenario based on DIII-D high poloidalbeta (beta(p)) discharges finds that ITB formation can occur with either sufficient rotation or a negative central shear q-profile. The high beta(p) scenario is characterized by a large bootstrap current fraction (80%) which reduces the demands on the external current drive, and a large radius internal transport barrier which is associated with excellent normalized confinement. Modeling predictions of the electron transport in the high beta(p) scenario improve as q(95) approaches levels similar to typical existing models of ITER steady-state and the ion transport is turbulence dominated. Typical temperature and density profiles from the non-inductive high beta(p) scenario on DIII-D are scaled according to 0D modeling predictions of the requirements for achieving a Q = 5 steady-state fusion gain in ITER with 'day one' heating and current drive capabilities. Then, TGLF turbulence modeling is carried out under systematic variations of the toroidal rotation and the core q-profile. A high bootstrap fraction, high beta(p) scenario is found to be near an ITB formation threshold, and either strong negative central magnetic shear or rotation in a high bootstrap fraction are found to successfully provide the turbulence suppression required to achieve Q = 5.
文章类型Article
关键词Steady-state Transport Iter Diii-d
WOS标题词Science & Technology ; Physical Sciences
DOI10.1088/1741-4326/aa79ca
关键词[WOS]EQUATION
收录类别SCI
语种英语
项目资助者US Department of Energy, Office of Science, Office of Fusion Energy Sciences(DE-FC02-04ER54698 ; US Department of Energy, Office of Science, Office of Fusion Energy Sciences(DE-FC02-04ER54698 ; US Department of Energy, Office of Science, Office of Fusion Energy Sciences(DE-FC02-04ER54698 ; US Department of Energy, Office of Science, Office of Fusion Energy Sciences(DE-FC02-04ER54698 ; US Department of Energy, Office of Science, Office of Fusion Energy Sciences(DE-FC02-04ER54698 ; US Department of Energy, Office of Science, Office of Fusion Energy Sciences(DE-FC02-04ER54698 ; US Department of Energy, Office of Science, Office of Fusion Energy Sciences(DE-FC02-04ER54698 ; US Department of Energy, Office of Science, Office of Fusion Energy Sciences(DE-FC02-04ER54698 ; US Department of Energy, Office of Science, Office of Fusion Energy Sciences(DE-FC02-04ER54698 ; US Department of Energy, Office of Science, Office of Fusion Energy Sciences(DE-FC02-04ER54698 ; US Department of Energy, Office of Science, Office of Fusion Energy Sciences(DE-FC02-04ER54698 ; US Department of Energy, Office of Science, Office of Fusion Energy Sciences(DE-FC02-04ER54698 ; US Department of Energy, Office of Science, Office of Fusion Energy Sciences(DE-FC02-04ER54698 ; US Department of Energy, Office of Science, Office of Fusion Energy Sciences(DE-FC02-04ER54698 ; US Department of Energy, Office of Science, Office of Fusion Energy Sciences(DE-FC02-04ER54698 ; US Department of Energy, Office of Science, Office of Fusion Energy Sciences(DE-FC02-04ER54698 ; National Magnetic Confinement Fusion Program of China(2015GB102002 ; National Magnetic Confinement Fusion Program of China(2015GB102002 ; National Magnetic Confinement Fusion Program of China(2015GB102002 ; National Magnetic Confinement Fusion Program of China(2015GB102002 ; National Magnetic Confinement Fusion Program of China(2015GB102002 ; National Magnetic Confinement Fusion Program of China(2015GB102002 ; National Magnetic Confinement Fusion Program of China(2015GB102002 ; National Magnetic Confinement Fusion Program of China(2015GB102002 ; National Magnetic Confinement Fusion Program of China(2015GB102002 ; National Magnetic Confinement Fusion Program of China(2015GB102002 ; National Magnetic Confinement Fusion Program of China(2015GB102002 ; National Magnetic Confinement Fusion Program of China(2015GB102002 ; National Magnetic Confinement Fusion Program of China(2015GB102002 ; National Magnetic Confinement Fusion Program of China(2015GB102002 ; National Magnetic Confinement Fusion Program of China(2015GB102002 ; National Magnetic Confinement Fusion Program of China(2015GB102002 ; ORNL AToM SciDAC(DE-FG02-95ER54698 ; ORNL AToM SciDAC(DE-FG02-95ER54698 ; ORNL AToM SciDAC(DE-FG02-95ER54698 ; ORNL AToM SciDAC(DE-FG02-95ER54698 ; ORNL AToM SciDAC(DE-FG02-95ER54698 ; ORNL AToM SciDAC(DE-FG02-95ER54698 ; ORNL AToM SciDAC(DE-FG02-95ER54698 ; ORNL AToM SciDAC(DE-FG02-95ER54698 ; ORNL AToM SciDAC(DE-FG02-95ER54698 ; ORNL AToM SciDAC(DE-FG02-95ER54698 ; ORNL AToM SciDAC(DE-FG02-95ER54698 ; ORNL AToM SciDAC(DE-FG02-95ER54698 ; ORNL AToM SciDAC(DE-FG02-95ER54698 ; ORNL AToM SciDAC(DE-FG02-95ER54698 ; ORNL AToM SciDAC(DE-FG02-95ER54698 ; ORNL AToM SciDAC(DE-FG02-95ER54698 ; ORNL DIII-D science ; ORNL DIII-D science ; ORNL DIII-D science ; ORNL DIII-D science ; ORNL DIII-D science ; ORNL DIII-D science ; ORNL DIII-D science ; ORNL DIII-D science ; ORNL DIII-D science ; ORNL DIII-D science ; ORNL DIII-D science ; ORNL DIII-D science ; ORNL DIII-D science ; ORNL DIII-D science ; ORNL DIII-D science ; ORNL DIII-D science ; DE-SC0010685) ; DE-SC0010685) ; DE-SC0010685) ; DE-SC0010685) ; DE-SC0010685) ; DE-SC0010685) ; DE-SC0010685) ; DE-SC0010685) ; DE-SC0010685) ; DE-SC0010685) ; DE-SC0010685) ; DE-SC0010685) ; DE-SC0010685) ; DE-SC0010685) ; DE-SC0010685) ; DE-SC0010685) ; 2015GB103000) ; 2015GB103000) ; 2015GB103000) ; 2015GB103000) ; 2015GB103000) ; 2015GB103000) ; 2015GB103000) ; 2015GB103000) ; 2015GB103000) ; 2015GB103000) ; 2015GB103000) ; 2015GB103000) ; 2015GB103000) ; 2015GB103000) ; 2015GB103000) ; 2015GB103000) ; DE-FG02-95ER54309) ; DE-FG02-95ER54309) ; DE-FG02-95ER54309) ; DE-FG02-95ER54309) ; DE-FG02-95ER54309) ; DE-FG02-95ER54309) ; DE-FG02-95ER54309) ; DE-FG02-95ER54309) ; DE-FG02-95ER54309) ; DE-FG02-95ER54309) ; DE-FG02-95ER54309) ; DE-FG02-95ER54309) ; DE-FG02-95ER54309) ; DE-FG02-95ER54309) ; DE-FG02-95ER54309) ; DE-FG02-95ER54309)
WOS研究方向Physics
WOS类目Physics, Fluids & Plasmas
WOS记录号WOS:000407218600008
引用统计
被引频次:22[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.hfcas.ac.cn:8080/handle/334002/33570
专题中科院等离子体物理研究所
作者单位1.Oak Ridge Associated Univ, Oak Ridge, TN 37831 USA
2.Gen Atom, POB 85608, San Diego, CA 92186 USA
3.Oak Ridge Natl Lab, POB 2008, Oak Ridge, TN 37831 USA
4.Chinese Acad Sci, Inst Plasma Phys, Hefei 230031, Anhui, Peoples R China
推荐引用方式
GB/T 7714
McClenaghan, J.,Garofalo, A. M.,Meneghini, O.,et al. Transport modeling of the DIII-D high beta(p) scenario and extrapolations to ITER steady-state operation[J]. NUCLEAR FUSION,2017,57(11).
APA McClenaghan, J..,Garofalo, A. M..,Meneghini, O..,Smith, S. P..,Leuer, J. A..,...&Qian, J..(2017).Transport modeling of the DIII-D high beta(p) scenario and extrapolations to ITER steady-state operation.NUCLEAR FUSION,57(11).
MLA McClenaghan, J.,et al."Transport modeling of the DIII-D high beta(p) scenario and extrapolations to ITER steady-state operation".NUCLEAR FUSION 57.11(2017).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[McClenaghan, J.]的文章
[Garofalo, A. M.]的文章
[Meneghini, O.]的文章
百度学术
百度学术中相似的文章
[McClenaghan, J.]的文章
[Garofalo, A. M.]的文章
[Meneghini, O.]的文章
必应学术
必应学术中相似的文章
[McClenaghan, J.]的文章
[Garofalo, A. M.]的文章
[Meneghini, O.]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。