HFCAS OpenIR  > 中科院固体物理研究所
New methods for prediction of elastic constants based on density functional theory combined with machine learning
Wang, Juan1,2; Yang, Xiaoyu1,2; Zeng, Zhi3; Zhang, Xiaoli3; Zhao, Xushan1; Wang, Zongguo1
2017-10-01
发表期刊COMPUTATIONAL MATERIALS SCIENCE
卷号138页码:135-148
摘要Elastic constants play critical roles in researching mechanical properties, but they are usually difficult to be measured. While density functional theory (DFT) calculations provide a reliable method to meet this challenge, the results contain inherent errors caused by various approximations. The data-driven approach of machine learning also laid a foundation for predicting material properties. In order to increase the accuracy of theoretical calculations results, in this paper we investigate using machine learning methods to both correct the elastic constants by DFT calculation, and to directly predict elastic constants. The single-hidden layer feedforward neural network trained by back propagation algorithm (SLFN), general regression neural network (GRNN) and support vector machine for regression (SVR) techniques are employed to build regression models to correct the elastic constants by DFT calculation for metal or metallic binary alloys. We also build regression models to predict the elastic constants of metallic binary alloys with cubic crystal system rather than using DFT calculations. It has been demonstrated that the elastic constants corrected by regression models has higher accuracy than those calculated by DFT, and the elastic constants of binary alloys directly predicted by model using the outperformed SLFN technique is prospective. (C) 2017 Elsevier B.V. All rights reserved.
文章类型Article
关键词Prediction Of Elastic Constants Materials Informatics Dft Calculation Neural Network General Regression Neural Network Support Vector Regression
WOS标题词Science & Technology ; Technology
资助者National Natural Science Foundation of China (NSFC)(11534012 ; National Natural Science Foundation of China (NSFC)(11534012 ; 61472394) ; 61472394) ; National Natural Science Foundation of China (NSFC)(11534012 ; National Natural Science Foundation of China (NSFC)(11534012 ; 61472394) ; 61472394)
DOI10.1016/j.commatsci.2017.06.015
关键词[WOS]TOTAL-ENERGY CALCULATIONS ; WAVE BASIS-SET ; SINGLE-CRYSTALS ; INTERMETALLIC COMPOUNDS ; TEMPERATURE-DEPENDENCE ; ROOM-TEMPERATURE ; MARTENSITIC-TRANSFORMATION ; STIFFNESS COEFFICIENTS ; PRESSURE-DEPENDENCE ; LATTICE-DYNAMICS
收录类别SCI
语种英语
资助者National Natural Science Foundation of China (NSFC)(11534012 ; National Natural Science Foundation of China (NSFC)(11534012 ; 61472394) ; 61472394) ; National Natural Science Foundation of China (NSFC)(11534012 ; National Natural Science Foundation of China (NSFC)(11534012 ; 61472394) ; 61472394)
WOS研究方向Materials Science
WOS类目Materials Science, Multidisciplinary
WOS记录号WOS:000410617000017
引用统计
被引频次:2[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.hfcas.ac.cn:8080/handle/334002/33667
专题中科院固体物理研究所
作者单位1.Chinese Acad Sci, Comp Network Informat Ctr, Beijing 100190, Peoples R China
2.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
3.Chinese Acad Sci, Inst Solid State Phys, Hefei 230031, Anhui, Peoples R China
推荐引用方式
GB/T 7714
Wang, Juan,Yang, Xiaoyu,Zeng, Zhi,et al. New methods for prediction of elastic constants based on density functional theory combined with machine learning[J]. COMPUTATIONAL MATERIALS SCIENCE,2017,138:135-148.
APA Wang, Juan,Yang, Xiaoyu,Zeng, Zhi,Zhang, Xiaoli,Zhao, Xushan,&Wang, Zongguo.(2017).New methods for prediction of elastic constants based on density functional theory combined with machine learning.COMPUTATIONAL MATERIALS SCIENCE,138,135-148.
MLA Wang, Juan,et al."New methods for prediction of elastic constants based on density functional theory combined with machine learning".COMPUTATIONAL MATERIALS SCIENCE 138(2017):135-148.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Wang, Juan]的文章
[Yang, Xiaoyu]的文章
[Zeng, Zhi]的文章
百度学术
百度学术中相似的文章
[Wang, Juan]的文章
[Yang, Xiaoyu]的文章
[Zeng, Zhi]的文章
必应学术
必应学术中相似的文章
[Wang, Juan]的文章
[Yang, Xiaoyu]的文章
[Zeng, Zhi]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。